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Brittle detachment of a stiffener bonded to an elastic plate
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Abstract. The diffusion of contact stresses between an elastic bar, bonded to an elastic half-plane and loaded
longitudinally, requires the integration of a singular integral equation. The solution of this equation is not available
in closed form, but only by a series expansion of the contact tangential force mutually transmitted between
the stiffener and the plate. Since forty years it has been realized that the expansion of the solution in terms of
Chebyshev polynomials is its most convenient method of representation. The procedure can also be extended to
treat the brittle detachments of the tips of the stiffener when, according to Griffith’s criterion of fracture, a balance
can be virtually established between the increase of strain energy due to a propagation of cracks and the surface
energy created.
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1. Introduction

The diffusion of stresses between an elastic one-dimensional filament and an elastic half-plane
to which the filament is bonded is a classic mixed-boundary-value problem of linear elasticity
tackled with different methods since the time when it was proposed (but not solved) by E.
Reissner [1]. The difficulty is due to the fact that the problem involves an integro-differential
equation defined on a finite interval, and the solution of this equation can only be approximated
either by series expansions, by successive approximations, or by collocation.

However, among these methods, the solution in terms of Chebyshev polynomials proved
to be the most elegant and efficient one. The series representing the solution is rapidly conver-
gent, and, more importantly, the singularities of the solution at the tips of the reinforcement
are explicitly indicated and completely contained in a singular function which multiplies the
whole series. This implies that the nature of the singularity is always the same, independent of
the number of terms with which the series is approximated. The use of Chebyshev polynomials
in a singular integro-differential equation, like that of the finite reinforcement considered here,
has de facto been introduced by Hamel [2, p. 145] in his book on integral equations. Hamel
used combinations of trigonometric functions without discussing the completeness of the sys-
tem of these functions. Completeness is, however, well established for Chebyshev functions
(cf. Weinberger [3, p. 73]). The application of Chebyshev functions in solving the problem of
the finite stiffener appears much later in the literature by merit of Arutiunian [4] and Bufler
[5], who worked independently. A clear explanation of the procedure is now recorded in the
book by Grigolyuk and Tolkachev [6, p. 176].

There is an interesting extension of the problem of the stiffener, assuming that the stiffener
is welded to the half-plane by a brittle thin sheet. Consider the case in which two concentrated
forces of equal magnitude but opposite directions are applied to its ends. If these forces are
sufficiently small, the transmission of stresses between stiffener and half-plane is determined
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Figure 1. Geometrical sketch.

by solving (with one of the approximation procedures at hand) Hamel’s equation. But, if loads
exceed a certain limit, it may happen that a partial detachment of the stiffener occurs starting
from the ends, where stresses become theoretically infinite. The critical value of the magnitude
of loads at which the propagation of detachment initiates can easily be determined by a balance
between the energy released by the detachment and that supplied by the debonding of the
welding material. This is, conceptually, a simple variant of Griffith’s fracture criterion.

But the problem of evaluation of the critical load of possible debonding of a stiffener can
be further extended to the case in which it is loaded by impressing two equal and opposite
displacements at its end instead of two opposite forces. The determination of the stress dif-
fusion between stiffener and plate under prescribed displacements at the ends of the stiffener
requires the solution of an integral equation, again treatable with Chebyshev polynomials.
The surprising result is that the onset of rupture by impressed displacements is, not only
numerically, but also qualitatively different from that of impressed forces. This fact has also
been observed by Burridge and Keller [7] in another problem.

There are many sectors of technology where the brittle detachment of a stiffener from
a plate arises as the simplest model for describing more complex situations. The rupture of
a weld in a steel beam, or the partial detachment of a rib from a panel represent the most
popular instances. But it has recently been realized that the same problem must be solved in
seismology in order to determine the limiting condition at which a fault, bonded to a substrate,
suddenly detaches and eventually slips, as Knopoff et al. [8] have demonstrated.

2. The two-bars model

In order to illustrate the essential features of the problem under consideration we consider a
system of two bonded bars, one of length 2 and extensional rigidity EcFc, and one of infinite
length and extensional rigidity EF (Figure 1).

The two bars are welded together by an adhesive substance which is rigid at low level of
load, but breaks when its energy for unit length reaches a given value γ . We assume that only
the upper bar is loaded at its ends by two equal and opposite forces P , and only a tangential
interaction force occurs between the two bars. Let us denote the line of adhesion by x and take
the origin at the mid-point of the upper bar so that it covers the interval −1 ≤ x ≤ 1.

If the bars are sufficiently slender, we can apply the elementary theory to them. This implies
that it is not necessary to calculate the tangential forces along the line of contact, but only the
axial forces Nc and N absorbed, respectively, by the stiffener and the part of the other bar
attached to it. The result is

Nc = P
EcFc

EF + EcFc

, N = P
EF

EF + EcFc

. (2.1)
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The part |x| > 1 of the infinite bar exterior to the interval |x| ≤ 1 is free from any force.
Then the total elastic energy of the system, that is, the sum of the strain energy minus the

external work of the loads, is given by

Etot = −1

2

2P 2

EF + EcFc

, (2.2)

where 2 is the length of the stiffener.
Let us now suppose that the connection between the bars is not complete as two cracks of

extent δ are localized at the tips of the interval |x| = 1 (Figure 1). In this case the axial forces
are not as before but have the values



Nc = P for |1 − x| < δ,

Nc = P
EcFc

EF + EcFc

, N = P
EF

EF + EcFc

for |x| < 1 − δ,

N = 0 for |x| > 1 − δ.

(2.3a,b,c)

On the other hand, according to Griffith’s criterion for fracture, the creation of two symmetric
cracks of lengths δ requires a surface energy 2γ δ. Thus, the total energy of the partially
fractured system becomes

Etot = − P 2δ

EcFc

− P 2(1 − δ)

EcFc + EF
+ 2γ δ. (2.4)

The propagation of the cracks occurs when P reaches a value such that Etot is stationary with
respect to δ. But Etot is linear in δ ad hence stationarity of Etot requires the coefficient of δ to
vanish. Thus from (2.4) we obtain the critical value of P for which cracks advance provoking,
eventually, the complete detachment:

P 2
cr = 2γ EcFc

1 − 1

1 + Ef

EcFc

. (2.5)

The analysis of the case in which two equal and opposite horizontal displacements are
impressed at the end of the stiffener is again based on inspection of the total energy. Let us
denote the common magnitude of these displacements by U . If U is sufficiently small, so
that the welding between the two bars is complete, the forces at the tips associated to the
displacements U are

P = U

EcFc + EF
, (2.6)

and the corresponding total energy is

Etot = 1

2

2U 2

(EcFc + EF)
. (2.7)

In the presence of two symmetric cracks of lengths δ situated at the extremities of the stiffer
(see again Figure 1) the relationship between the forces P and the displacements U becomes

U = P

(
δ

EcFc

+ 1 − δ

EcFc + EF

)
. (2.8)
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Figure 2. Stiffener partially attached to elastic half-plane.

Considering that here again the fracture energy is 2γ δ, we find that the total energy of the
system has the expression

Etot = 1

2

2U 2

δ

EcFc

+ 1 − δ

EcFc + EF

+ 2γ δ. (2.9)

Now the energy becomes stationary with respect to δ as soon as U 2 reaches the value

U 2
cr = 2γ EcFc(EcFc + EF)

(EcFc + δEF)
. (2.10)

Contrary to the case in which two forces are impressed, we now find that U 2
cr does not

depend only on γ and the extensional rigidities of the bars, but also on the length δ of the
cracks.

3. Load transfer from a finite stiffener and a half-plane

The diffusion of stresses between an elastic stiffener bonded to an elastic semi-infinite plate
offers conceptually the same problem, but now the evaluation of the interaction force between
the stiffener and the plate is much more difficult. The situation we must describe is that of a
stiffener of extensional rigidity EcFc partially attached to an elastic half-plane of modulus E

and thickness h (Figure 2).
Let the stiffener occupy the interval −1 ≤ x ≤ 1 of the x-axis of a system of Cartesian

x, y-axes chosen as shown in Figure 2, so that the middle plane of the plate occupies the lower
half-plane y < 0. The stiffener is attached to the plate along the interior part |x| < 1−δ, while
the end intervals 1 − δ < |x| < 1 are detached. Two longitudinal forces P are applied to the
ends of the stiffener. We assume that the stiffener transmits only tensile or compressive force,
therefore only a tangential stress q(x) is transmitted between the stiffener and the plate.

Consider the equilibrium of the part of the stiffener confined between a section of abscissa
x and the end (1 − δ) (Figure 2). The axial force at x is thus

Nc = P −
∫ 1−δ

x

q(x)dx, (3.1)

and the corresponding strain εc is Nc/EcFc. Considering instead the plate, the strain εx along
the line of action of the forces q(x) is given by the formula of plane elasticity (cf. Szabó [9,
Chapter 11, p. 212])
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εx = 2

πEh

∫ 1−δ

−(1−δ)

q(x)

x − x0
dx. (3.2)

By equating the two strains we obtain the integral equation∫ 1−δ

−(1−δ)

q(x)

x − x0
dx = π4λ

4

(
P −

∫ 1−δ

x0

q(x)dx

)
, (3.3)

where (cf. Grigolyuk-Tolkachev [6, Section 3.7]) we have put λ = 2
π

Eh
EcFc

The solution of (3.3)
is also subject to the quilibrium condition∫ 1−δ

−(1−δ)

q(x)dx = 0. (3.4)

In order to treat (3.3) by using Chebyshev’s polynomials we make the change of variable
(cf. Grigolyuk-Tolkachev [6, Section 3.8])

t = 1

1 − δ
x

and transform (3.3), (3.4) into∫ 1

−1

q(t)

t − t0
dt = π2λ

4

(
P − (1 − δ)

∫ 1

t0

q(t)dt

)
, (3.5)

∫ 1

−1
q(t)dt = 0. (3.6)

Let us now seek an expansion of the solution q(x) in terms of Chebyshev’s polynomials of
the first kind Ts(t)

q(t) = P

π

1√
1 − t2

2n+1∑
s=1,3,...

XsTx(t), (3.7)

where Xs are constants to be determined. Note that (3.7) contains only odd terms since q(t)

must be an odd function of t in the interval −1 ≤ t ≤ 1. As a consequence, condition (3.6) is
automatically satisfied. We now substitute (3.7) in (3.5) and compute the integrals, while still
using the properties of Chebyshev functions. The result is the equation

2n+1∑
s=1,3,...

XsUs−1(t0) + π

4
λ(1 − δ)

2n+1∑
s=1,3,...

Xs

s
Us−1(t0)

√
1 − t2

0 = λπ2

4
, (3.8)

which is structurally similar, but not identical, to that recorded in the book by Grigolyuk-
Tolkachev [6, Section 3.8] in the treatment of a non-detached stiffener. Equation (3.8) can be
solved by Bubnov-Galerkin’s method, which consists in multiplying both sides of the equation

by
√

1 − t2
0 Uj−1(t0)(j = 1, 3, . . . , 2n + 1) and integrating over the interval −1 ≤ t ≤ 1, still

making recourse to the definite integrals of Chebyshev functions (cf. [10]). As result we obtain
the set of algebraic equations for Xj

Xj + λ

2
(1 − δ)

2n+1∑
s=1,3,...

ajsXs = λ

2
bj (j = 1, 3, . . . , 2n + 1), (3.9)
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where the coefficients ajs , already calculated by Grigolyuk and Tolkachev [6, Section 3.8],
have the form

ajs = − 4j

[(j + s)2 − 1][(j − s)2 − 1] (j, s = 1, 3, . . . ). (3.10)

The terms bj have the values

b1 = π2

2
, b3 = b5 = . . . = 0. (3.11)

Solving the system of algebraic equations (3.9), we determine the Xj and hence q(t). Then
from (3.2), written after introduction of the t-variable, we obtain the axial strain

εx = εc = 2

π E h

∫ 1

−1

q(t)

t − t0
dt = 2

π E h
P

2n+1∑
s=1,3,...

XsUs−1(t), (3.12)

and hence, by integration with respect to x expressed in terms of t , we find the axial displace-
ment in the stiffener:

u(t0) = 2

π E h

∫ t0

0
(1 − δ)

2n+1∑
s=1,3,...

XsUs−1(t0)dt0 = 2

π E h
P (1 − δ)

2n+1∑
s=1,3,...

Xs

s
Ts(t0). (3.13)

In particular, the displacements of the points t0 = ±1, are

u(±1) = ± 2

π E h
P (1 − δ)

2n+1∑
s=1,3,...

Xs

s
. (3.14)

The only exterior forces acting on the system are the two opposite forces P applied at the
ends of the stiffener (Figure 2). Thus, the total energy of the partially cracked system is

Etot = −1

2
2

2 P 2

π E h
(1 − δ)

2n+1∑
s=1,3,...

Xs

s
− 1

2
2

P 2δ

EcFc

+ 2γ δ, (3.15)

where the first term represents the strain energy in the piece of stiffener bonded to the plate
plus that stored in the plate; the second term is the strain energy of the cracked portions of
stiffener and the third is the fracture energy.

The discussion of the critical condition of (3.15) is not easy, because the Xs also depend
on δ as we solve system (3.9). However, some useful indications about the critical values of P

can be obtained by examining two limiting cases. Consider first the case in which λ, defined
by the relation λ = 2

π
E h

EcFc
, is very small with respect to 1. Then an approximate solution of

system (3.9) is given by the following values of the Xs

X1 � λ
π2

4
, X3 � X5 � . . . � 0. (3.16)

If we replace this expression of the Xs in (3.15) and impose the condition of stationarity of εc

with respect to δ, we obtain

P 2
cr = 2γ EcFc

1 − 2EcFc

E h
λ
π

4

. (3.17)
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Recalling that λ = 2
π

E h
EcFc

we thus conclude that P 2
cr is theoretically infinite, which result is

not surprising because, if the plate is very soft with respect to the bar, it behaves as if it were
detached. Let us instead suppose that the product (1 − δ)λ is large. This implies that not only
λ must be large, but also δ sufficiently close to zero. In this case an approximate solution of
system (3.9), obtained by neglecting the first terms Xj in (3.9) and exploiting the fact that
coefficients of the form ajj are dominant, is

X1 � 3π2

8(1 − δ)
, X3 � X5 � . . . � 0. (3.18)

Substitution of this value of X1 in (3.15) yields the following expression for the total energy

Etot = −1

2
2

P 2

π E h

3π2

8
− 1

2
2

P 2δ

EcFc

+ 2γ δ. (3.19)

The energy becomes stationary for

P 2
cr = 2γ EcFc. (3.20)

This is exactly the critical value of the two forces which produce the brittle detachment of an
elastic stiffener from a rigid support.

4. Detachment due to impressed displacements

Figure 2 illustrates the case in which the stiffener is loaded by two opposite forces P . But let
us suppose that, instead of forces, the stiffener is loaded by two equal displacements U at its
ends, and we want to determine the critical value of U for which two pre-existing cracks of
extents δ may propagate.

The treatment of the problem is similar to that considered above, but requires some mod-
ifications. The magnitude of the forces P is now unknown and must be determined from
knowledge of U . In the partially cracked system sketched in Figure 2 the displacement U is
the sum of the displacement at the fracture tips x = ±(1 − δ) (evaluated in (3.14)) and that of
the two pieces of detached stiffener at x = ±1:

U = 2

π E h
P (1 − δ)

(
2n+1∑

s=1,3,...

Xs

s

)
+ Pδ

EcFc

. (4.1)

From this equation we derive P in terms of U and evaluate the strain energy 1
2PU . Adding

the surface energy we obtain the total energy Etot:

Etot = 1

2
2

U 2

2
π E h

(1 − δ)
(∑2n+1

x=1,3,...
Xs

s

)
+ δ

EcFc

+ 2γ δ. (4.2)

Note that, in contrast to the case of impressed forces, the strain energy is now positive, since
there are no external loads. Here again the analysis of the critical conditions is done for two
extreme cases. If λ is neglegible with respect to 1 we can approximate the Xs in (4.1) by
(3.16). After differentiation with respect to δ we arrive at the following expression for U 2

cr:

U 2
cr =

2γ

EcFc

[
δ + 2EcFc

π E h
(1 − δ)λ

π2

4

]

1 − 2EcFc

E h
λ
π

4

. (4.3)
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Also in this case U 2
cr becomes theoretically infinite if we give λ the value 2 E h

π EcFc
. Another

extreme situation occurs when (1 − δ)λ is large, since now we may replace the approximate
solution (3.18) in (4.2). Then an easy calculation of U 2

cr yields the value

U 2
cr = 2γ

EcFc

.

It is useful to observe that, though being conceptually analogous as formulation and treat-
ment, the two problems, of imposed forces or displacements, have strongly different solutions
as far as the numerical and qualitative dependence of the critical values P 2

cr, U 2
cr on δ is

concerned.

5. Some concluding remarks

The problem of the brittle detachment of a stiffener from the edge of an elastic halfplane
is, of course, only a schematic example of how to treat the mutual debonding of two elastic
bodies as soon as the total energy of the combined system reaches a certain critical value.
The critical state is characterized by the condition that the released elastic energy, due to the
sudden creation of a fracture at the interface, is balanced by an equal supply of fracture energy
localized along the surface of rupture. The mechanical criterion is simple, but the evaluation of
the released elastic energy is difficult, even in the case of a single rectilinear stiffener bonded
to a half-plane. The application of the energy theory of debonding are not limited to stiffeners
in steel constructions. The criterion is now employed in order to estimate the resistance of
materials reinforced by fibers, to predict the onset of earthquaques consequent to the formation
of tectonic faults, to establish the duration of a prothesis and other interesting phenomena.
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